تبلیغات
انجمن ریاضی پژوهشسرای جوان - ریاضی وموسیقی

انجمن ریاضی پژوهشسرای جوان

ریاضی وموسیقی

شنبه 29 بهمن 1384

در یونان باستان ریاضیات و موسیقی هر یک بنوبه خود از ابتدای خلقت در مسیر تکامل تمدن بشری نقش موثری داشته اند. ریاضیات بطور مستقیم با پیشرفت گونه های مختلف علوم تجربی، نظری، مهندسی و ... در ارتباط بوده و موسیقی علاوه بر تاثیر مستقیم بر سایر هنرها، همه روزه درحال تعامل با انسان در تمام نقاط جهان است بگونه ای که امروزه از آن حتی بعنوان یک ابزار برای جهت دادن به پدیده های اجتماعی ، سیاسی و فرهنگی استفاده می شود.


مجسمه
 برنجی از فیثاغورث ریاضی دانی
که به موسیقی علاقه بسیار داشت. برای بسیاری از مردم که با ریاضیات سر و کاری ندارند، فرمول ها و قوانین ریاضی بسیار خشک و پیچیده بنظر می رسد و گاهی هم بعنوان رمز یا رازی که میان یک سری اعداد، نشانه ها و علائم عجیب و غریب است، مطرح می شود. بسیاری از مردم - حتی آنها که با ریاضی در ارتباط هستند - معتقدند که ریاضیات یک علم عقلی است و حداکثر توانایی آن مدل سازی پدیده های فیزیکی است، حال آنکه اگر به مسائل و رخدادهای اجتماعی نگاهی بیندازیم بسادگی خواهیم دید که مثلا" توزیع پدیدهای - متغییرهای - تصادفی اجتماعی غالبا" از رفتار توزیع نرمال "گوس" پیروی میکنند، بنابر این نمی توان به این صراحت از ریاضیات بعنوان یک علم نظری محض نام برد.

ریاضیات عقلی در مقابل موسیقی احساسی
اما اگر ریاضیات با عقل انسان در ارتباط است، موسیقی را می توان از مهمترین هنرهایی دانست که بسادگی روح آدمی را تحت تاثیر خود قرار میدهد که خوشبختانه امروزه در جوامع مختلف بصورت بسیار زیادی با زندگی عجین شده است. همه ما حداقل یک قطعه موسیقی را از حفظ بلد هستیم و به هنگام خلوت، هنگام کار یا رانندگی و ... آنرا زمزمه می کنیم. حتی درصد بالایی از مردم توانایی نوازندگی و خوانندگی بصورت آماتور و یا حرفه ای را دارا میباشند. موسیقی در یک نگاه ساده هنری است که تمام مردم می توانند بسادگی با آن تعامل داشته باشند.

اما چگونه ممکن است ریاضیات که علمی کاملا" عقلی است با موسیقی که هنری کاملا" احساسی است، مشابهت هایی با یکدیگر داشته باشند و یا حتی در برخی زمینه ها همگرایی هایی؟


تحقیقات نشان داده که موسیقی مهارت
مغز در حل مسائل فکری را بیشتر میکند

مشخصترین ترین ارتباط میان موسیقی و ریاضی
اولین دخالتی که ریاضیات می تواند در موسیقی انجام دهد از آنجا ناشی می شود که موسیقی ناشی از تکرار برخی اصوات - یا نت های موسیقی - در بازه زمان است. طول مدت نتها را می توان اندازه گرفت و به روابطی میان آنها در بازه زمان دست پیدا کرد. همانند آنچه در تحلیل ریتم های مختلف انجام می شود.

مسئله دیگر بررسی ارتباط فرکانسی میان نت های مختلف موسیقی و ارتباطات میان نت های موسیقی و زیبایی شناسی است که اغلب در مباحث مربوط به فیزیک صوت بررسی می گردد. این ارتباط همچنین می تواند به تحلیل ریاضی گونه از انواع سبک های هارمونی و یا انواع روشهای ساخت ملودی از روی موتیف مشخص و ... باشد.

اما آیا ارتباط موسیقی و ریاضیات در همین حد یعنی مدل کردن رفتار موسیقی با کمک روابط ریاضی است؟

نتایج برخی تحقیقات جدید
بدون شک سخن نا آشنایی نخواهد بود اگر بگوییم که تحقیقات دانشمندان (New Scientist شمار 153) نشان داده است، کودکانی که پیانو می نوازند و آموزش موسیقی می بینند معمولا" :

-
توانایی بیشتری در درست کردن پازل های پیچیده دارند،
-
خیلی بهتر از سایر کودکان شطرنج بازی می کنند،
-
و دارای قدرت استنتاج بیشتری هستند.

همچنین در بررسی دیگری (The American Mathematical Monthly شماره 103) مشاهده شده است که بیش از 68 درصد دانشجویان رشته ریاضی از کلاسهای موسیقی بعنوان دروس اختیاری برای فارغ التحصیل شدن اختیار می کنند. نتیحه این بررسی رابطه نا شناخته میان موسیقی و ریاضی را تا حد زیادی آشکار میکند.

در ادامه مطالبی که در اینباره خواهیم نوشت قصد آن داریم تا بطور خلاصه به روابط پنهان میان موسیقی و ریاضیات بپردازیم و دلیلی بر این موضوع بیاوریم که چرا اغلب موسیقیدانان به ریاضیات و کارهای فکری علاقه دارند و یا اینکه چرا تقریبا" تمام ریاضی دانان به موسیقی عشق می ورزند. (ادامه دارد ...)
 تان موسیقی و ریاضیات (حساب و هندسه) در کنار نجوم تشکیل علوم چهارگانه را می دادند، درواقع یونانیان قدیم به این چهار شاخه از علوم به دیده ریاضیات نگاه می کردند. در آن دوران از تمدن بشری موسیقی بعنوان علمی مطرح بود که توسط آن روابط و نسبت های ریاضی به عمل تجربه می شد و به موسیقی در مدارس به اندازه حساب، هندسه و نجوم بها داده شده، دانش آموزان مجبور بودند در موسیقی نیز به انداز سه علم دیگر کسب معلومات کنند.


تقسیم بندی
 علوم در یونان باستان


تقسیم بندی علوم در یونان قدیم
یونانیان قدیم از ریاضات بعنوان علم مطالعه تغییر ناپذیرها یاد می کردند. آنها این مقوله علمی را به دو دسته بزرگتر یعنی علوم مربوط به مقادیر مجزا (discreet) و مقادیر پیوسته (continued) تقسیم بندی کرده بودند.

مقادیر مجزا شامل دو علم از علوم چهارگانه یعنی حساب و موسیقی بود. آنها مقوله های مربوط به حساب را معادل بررسی مقادیر قابل شمارش و مجزای مستقل می دانستند و موسیقی را بررسی مقادیر مجزایی که با یکدیگر در تناسب و ارتباط هستند می دانستند.

در مقابل علوم مقادیر مجزا، علوم مقادیر پیوسته وجود داشت که شامل هندسه و نجوم بود. هندسه به بررسی سکون و نجوم به بررسی هرآنچه به حرکت مربوط میشد می پرداخت.

بنابراین هماگونه که از این تقسیم بندی (به شکل توجه کنید) بر می آید جایگاه موسیقی هم ردیف سایر شاخه های علم ریاضی بوده است. اما در یک کلام شاید بتوان علم موسیقی ای را که یونانیان باستان آنرا تعریف کرده اند علمی دانست که به بررسی روابط میان صداهای خوشایند و ناخوشایند (در اینجا منظور consonance و dissonance) است، نامید.

اکتشافات فیثاغورث و پیروان او در باره نت های موسیقی
اولین کشف دانشمندان یونان آن بود که اصوات موسیقی ای که فرکانس آنها مضاربی از یکدیگر هستند همواره بصورت خوشایند شنیده می شوند. بسیاری از دانشمندان و حتی مردم عادی متوجه بودند که هنگامی که دو صدای موسیقی با یکدیگر اجرا می شوند لزوما" احساس خوبی را در انسان ایجاد نمی کنند.


کتاب موسیقی و ریاضیات از فیثاغورث تا فرکتال
از منابع مفید راجع به ارتباط ریاضیات و موسیقی
شامل مباحث متنوع تاریخی و نظری با ذکر مثال

آنها همچنین متوجه شده بودند که یکی از مهمترین نسبت های فرکانسی نسبت 1:2 یا همان اکتاو است که طی آن نسبتهایی مانند 2:3 (پنجم) یا 3:4 (چهارم) یا 4:5 (سوم بزرگ) و 5:6 (سوم کوچک) تکرار می شود. یونانیان بخوبی به زیبایی صداهایی که با این نسبت ها بطور همزمان پخش می شدند آگاه بودند و فیثاغورث از جمله کسانی بود که رابطه ریاضی و خوشصدایی موسیقی را در میان تارهای صوتی مورد بررسی قرار داد. در واقع آنها دریافته بودند که نسبتهای x+1 برای x های کوچکتر از 10 و بزرگتر از صفر نسبتهایی است که نتیجه آن فاصله هایی خوش صدا هستند.

تمام این موارد که به نوعی از آنها می توان به عنوان پایه های دانش هارمونی یاد کرد، از دغدغه های علم موسیقی از زمان فیثاغورثیان تا اوایل قرون وسطی بوده است. شاید بزرگترین سئوال آنها این بود که چرا نمی توانند با استفاده از کنار هم قرار دادن نسبت هایی که از آنها نام بردیم به اولین نسبت خوش صدا کشف شده یعنی 1:2 یا اکتاو برسند. (در واقع این نشان می دهد که متاسفانه نسبت x به x+1 هرگز نمی تواند یک نسبت صحیح باشد.)

اما ناگفته نماند که فیثاغورثیان کشف کرده بودند که اگر شش فاصله 9:8 (که همان یک پرده است) را کنار هم قرار دهید به نتی می رسید که تقریبا" با نت اول نسبت 1:2 دارد. (در واقع باید نسبت 9:8 را به توان شش برسانید که نتیجه چیزی حدود 2.0273 می شود.)

در هر صورت هر آنچه بود سالها گذشت تا باخ تصمیم گرفت که این نسبت ها را معتدل کند و مشکلاتی را که از روز اول فیثاغورثیان - به درست - پایه گذار آنها بودند را رفع کند. در گام معتدل باخ هر اکتاو به 12 نیم پرده تقسیم می شود که نیم پرده های متوالی با یکدیگر نسبت ریشه دوازدهم عدد 2 را دارا هستند! تحت این شرایط فاصله پنجم گام معتدل باخ معادل هفت فاصله نیم پرده بوده که کمی کمتر از فاصله فیثاغورثی است(یعنی ریشه دوازدهم عدد 2 به توان 7).

جمع بندی
اما نکته ای که در پایان این بحث باید به آن اشاره کرد آن است که هرچند باخ برای ساده تر کردن مسائل مربوط به کوک موسیقی گام معتدل خود را ارائه کرد، اما باید اعتراف کرد که کوک کردن سازها با فاصله هایی متناسب با ریشه دوازدهم عدد 2 (که نتیجه عددی گنگ است) عملا" باعث شد که موسیقیدان ها برای کوک کردن سازهای خود از دستگاهایی استفاده کنند که نه تنها نمی توانند بصورت دقیق این نسبت ها را مشخص کنند (چون نسبتها گنگ بودند) بلکه بتدریج رابطه احساسی موسیقیدان با این نسبت های زیبای ریاضی در طول زمان به فراموشی سپرده شد، بگونه ای که امروزه بسیاری از نوازندگان و موسیقدانان از ارتباط میان فاصله های موسیقی با نسبت های فیثاغورثی بی خبر هستند.

 


اهرام مصر

مثلث از ابتدایی ترین اشکال هندسی بوده که انسانها در هنر ازاون استفاده میکردند، بدون شک اولین نوع از انواع مثلث هم که در هنر از آن استفاده شده مثلث متساول الاضلاع بوده است. اهرام مصر نمونه بسیاری قدیمی (حدود 2800 سال پیش از میلاد) از کاربری مثلت در هنر معماری قدیم بوده است. نمونه های دیگر از استفاده از مثلث در هنر تمدن های قدیم را می تواند در کاشی کاری های دیواره معابد Pompeii در نپال نیز مشاهده کرد.

معروف هست تالس (640-550 سال پیش از میلاد) که پدر ریاضیات، نجوم و فلسفه یونان باستان بوده از شاگردان خود می خواهد که به مصر سفر کنند تا از پیشرفت علوم در آن تمدن اطلاعات لازم را کسب کنند و فیثاغورث (Pythagoras) از اولین افرادی بوده که این دستور را می پذیرد و به مصر سفر میکند. فیثاغورث از بنیانگذاران علمی موسیقی در جهان بوده و اغلب از هندسه برای مدل کردن استفاده می کرده، می خواهیم با استفاده از تجربیات او سلسه مطالبی را پیرامون ارتباط موسیقی با علوم هندسه، فیزیک و ریاضی آغاز کنیم.


مثلث متساول الاضلاع معادل یک آکورد افزوده

موسیقی را می توانیم به روشهای مختلف مدل کنیم برای شروع کار ساده ترین روش را انتخاب میکنم که عبارت است از مدل کردن عمودی موسیقی یاهمان هارمونی. این روش مدل کردن به موسیقیدان ها کمک می کند تا هنگام فکر یا گوش کردن به هارمونی تصویر بهتری از نت های موسیقی داشته باشند بخصوص برای نوازندگان سازغیر از پیانو.

یک دایره در نظر بگیرید و آنرا به دوازده قسمت مساوی (یک اکتاو کروماتیک) تقسیم کنید و نت ها را به ترتیب روی هر قسمت بنویسد مانند شکل. یکی از ساده ترین اشکال هندسی که در این دایره تقسیم شده می توان ساخت مثلت متساوی الاضلاع می باشد. که اگر آنرا بسازید و به آن دقت کنید تفسیر موسیقی آن یک آکورد افزوده خواهد بود. حتما" شنید که آکوردهای افزوده جدای از اینکه معکوس باشند یا نه چهار حالت بیشتر نیستند که دایره فوق این موضوع را بسادگی نمایش میدهد چرا که اگر راس بالایی مثلث را در جهت عقربه های ساعت حرکت دهیم تا رسیدن به نت E و انطباق دوباره روی خود، می تواند سه حالت دیگر را به خود بگیرد. همچنین به وضوح در شکل می توان دید که یک آکورد افزوده از سه فاصله (که در اینجا هرکدام یک ضلع مثلث هستند) یکسان معادل 4 نیم پرده تشکیل شده است.


آکوردهای بزرگ، کوچک، sus2 و sus4

شما باز هم می توانید مثلث های دیگری درست کنید. به شکل بعدی نگاه کنید که آکوردهای دو ماژور و لا مینور را نمایش میدهد. این دو مثلث (آکورد) خصوصیات جالبی دارند اولا" اضلاع آنها باهم برابر است، ثانیا" نسبت به خطی که از D کشیده میشود و به G# خطم میشود متقارن می باشند، حتما" می دانید که مینور نسبی گام دو ماژور، لامینور می باشد. به این طریق شما می توانید یک روش ساده برای پیدا کردن گامهای مینور و ماژور نسبی پیدا کنید، هر چند اینکار در پیانو بخاطر وضوح دیداری که چیدمان نت ها وجود دارد ساده می باشد.

مثلث های متساوی الساقین هم جالب هستند یکی از آنها آکورد sus2 را تشکیل میدهد که در شکل مشاهده میکنید و همچنین میتوانید آکوردهای کاسته را نیز باز با یک مثلث متساوی الساقین درست کنید. اگر دقت کنید این مثلث متساوی الساقین حالت آکورد sus2 برای C و حالت آکورد sus4 برای G دارد. بنابراین می توان به ارتباط نزدیک آکوردهای sus در حالت های 2 و 4 برای فاصله های پنجم با یکدیگر پی برد. این نکته هم جالب خواهد بود اگر شما راس D در این مثلث را نسبت به راس C قرینه کنید به آکورد sus2 دیگری می رسید که یک پرده عقب تر است آکورد Csus4 قرار دارد.

شما می توانید دامنه مدل کردن را ادامه دهید و راجع به سایر مثلث ها فکر کنید، همچنین می توانید آکوردهای چهار صدایی را با انواع چهار ضلعی ها مدل کنید. سئوالی که پیش می آید این است که آیا هستند افرادی که با شنیدن
[ شنبه 29 بهمن 1384 - 06:02 ق.ظ ]
[ویرایش شده در : - - -]

[ پیام ()|| اعضای انجمن ] [عمومی , ] [+]